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An analysis is presented which describes the slow-time evolution of an internal 
gravity wave in an arbitrarily specified stratification. The weakly nonlinear descrip- 
tion of a single-wave mode, governed by the nonlinear Schrodinger equation, breaks 
down when certain resonant conditions are satisfied. One such condition occurs when 
the group velocity of the wavetrain is equal to the phase velocity of a higher-mode 
long wave of the system. The resonant interaction occurs on a faster time scale and is 
described by a coupled pair of nonlinear partial differential equations governing the 
evolution of both the short-wave and the long-wave modes. This long-wave/short- 
wave interaction is pursued further in an experimental investigation by measuring 
the modal interchange of energy between two internal waves of disparate length and 
time scales. The resulting data are compared with numerical solutions of the long- 
wave/short-wave resonant interaction equations. In  general, the agreement between 
the theory and the experiment is reasonably good in the range of operating conditions 
for which the theory is valid. 

1. Introduction 
An important mpect of internal wave motions in the oceanic environment is the 

coupling which exists between motions occurring on widely different scales. It is 
generally felt that some of the weak background shearing motions associated with 
short vertical coherence scales are intimately connected to the propagating wavefield, 
as discussed by McIntyre (1973). The present work is directed toward gaining some 
understanding of such an interaction by addressing the problem of a nonlinear 
interaction between two narrow-band internal-wave modes with disparate length 
and time scales. 

Grimshaw (1977) studied the weakly nonlinear evolution of a single internal wave 
mode and noted that the theory failed when the group velocity of the given mode 
coincided with the long-wave phase velocity of a higher mode. In  this situation, a 
resonance occurs between the two wave modes and the problem must be reformulated 
on a faster time scale than was initially assumed. This same resonance mechanism 
was studied earlier by Djordjevic & Redekopp (1977) in the context of free-surface 
capillary-gravity waves and the appropriate evolution equations describing the 
long-time interaction were derived. In the internal-wave case, the long-wave/short- 
wave resonance provides a strong mechanism for dynamic coupling between the 

t Permanent address: Department of Aerosprtce Engineering, University of Southern 
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low-mode short waves and the weak shearing motions associated with long waves of 
low vertical coherence which are quite prevalent in the ocean (cf. Pinkel 1975). 

The theoretical background for the derivation of the coupled evolution equations 
is reviewed in 4 2 in order to establish the context of the interaction and to emphasize 
several aspects of internal-wave motions in structured thermoclines. Calculations for 
a specific model are presented to demonstrate the prominence of these resonances 
and to reveal their spectral bandwidth and density. We also present a linearized 
stability analysis together with numerical simulations of the evolution system to 
understand both the short- and long-time dynamics of the resonant interaction. The 
present study focuses on the interaction of wavetrains and does not deal with some 
of the interesting solitary wave solutions of the equations which are discussed 
separately by Ma & Redekopp (1979). 

Because of the potential importance of this resonance phenomenon in a number of 
dispersive wave systenis, we have chosen to supplement the analytical work with an 
experimental investigation. The configuration chosen consists of three mutually 
immiscible homogeneous layers with different densities. Each of the two internal 
interfaces supports a wave mode, and by proper choice of the fluid densities, layer 
depths and wave frequencies one may 'tune' the system to a resonant or near- 
resonant condition. Experiments were carried out over a range of wave frequencies, and 
the results are compared with numerical solutions of the resonant interaction equations 
using the analytically derived interaction coefficients for the experimental model. 

2. Theoretical results 
Consider the evolution of a two-dimensional (2, z )  wave in a density stratified fluid 

confined between two infinite horizontal planes separated by a distance h. The 
stratification, characterized by the Brunt-Vaisah frequency N ( z ) ,  is allowed to vary 
in the vertical and the Boussinesq approximation is invoked. Then, scaling all lengths 
by h, time with a characteristic Brunt-Vaisala frequency No, and velocity components 
with Noh, the dimensionless equations of motion can be written as 

and 

where J(a,  b )  is the Jacobian. A stream function $ has been introduced from which 
the horizontal and vertical velocities $a and - $z respectively, can be computed, and 
u represents the perturbation buoyancy (gp'/p,hNt), where po is the mean density 
and p' is the departure from the local undisturbed value p,(z). The first equation states 
that the density is conserved along the streamlines in the absence of diffusion and the 
latter equation, derived from the vorticity equation, brings forth the basic linear 
in ternal-wave operator. 

Denoting the amplitude of the fundamental wave mode with wavenumber k and 
frequency w by the small non-dimensional parameter F, a solution of the above equa- 
tions can be found having the form 

rt+ N211r,+J(a, $) = 0, (2.1) 

(2.2) (aq,v2 + N 2 m  $ + { J @ ,  + {J(V2$, $)It = 0, 

$ = .#(z) (A(& 7 )  E + A*E-l) + I 9  

E = ~ x p  i (kx  - ot), 
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+ - “28 - *C2q52(N2)’] (A2E2 + A*2E-2) + q z )  ( A  12) + . . ., (T (2.4) 

providing the amplitude function A(& 7) (where A* denotes the complex conjugate) 
satisfies the equation 

i(A,+C”A,) = 8{-hA55+VIA12A}+O(€2). (2.5) 

The variables 5 = ex and 7 = st are slow space and time scales and the function #(z)  
satisfies the familiar eigenvalue equation 

The parameter C, is the group velocity, which is defined in terms of the eigenfunction 
q5 and the phase speed C = w / k  by 

This shows clearly that the group speed of a given wave mode is always less than or 
equal to (at k = 0 )  the phase speed for that mode. The remaining parameters in the 
evolution equation (2 .5 )  have the definitions 

and 

where 

Q2 = 2 5  7 $8(N2)’+3C2 [ ( $ ) ’ ( N 2 ) ’ + $ ( N 2 ) n ] ) .  

The functions O ( z )  and O(z) are defined by the inhomogeneous equations 

8” + - - ( 2 k y  0 = $2(N2)‘, 
[ E Z Z  1 (2 .10)  
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K 
( b )  

FIGURE 1. (a) Schematic diagram of the two layer thermocline. (b )  Dispersion relation for the 
two-layer model with parameters h = 0.8, p = 2.5. 

The function Z(z) is related to @(z) by 

(2.12) 

Equation (2.10) and (2.11) require that the resonance conditions C,(2k) N C,(k) 
and C,(O) 1: Cgn(k) respectively, are not satisfied. The first condition defines a 
second-harmonic resonance which is possible for modes m lower than the fundamental 
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Cg,(k) = CdO) Cg,(k) = C,(O) Cg,(k) = C,(O) 
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Wavenumber, k 
F I U ~  2. Normalized coefficient of self-interaction term in nonlinear Schrodinger equation for 
two-layer thermocline model. Note the existence of several ~ingularities corresponding to 
resonances with higher-order modes. 

mode n. The second condition defines a resonance which can occur between the funda- 
mental short-wave mode n and higher long-wave modes m. When either of these 
resonance conditions are satisfied, the single mode evolution described by (2.5) 
breaks down because the coefficient v is singular. The multi-modal theory for these 
resonant cases has been discussed by Djordjevic & Redekopp (1977) and Grimshaw 
(1977). 

Our primary interest here centres on the long-wave-short-wave resonance. How- 
ever, before briefly outlining the theory for that interaction, we present calculations 
of the dispersion relation and the evaluation of v for a thermocline model which 
emphasizes the ubiquitous nature of this resonance case in oceanic environments. 
The model and the corresponding dispersion diagram is shown in figure 1. The com- 
putation of the coefficient v for the lowest mode is presented in figure 2 where the 
singularities arising from a matching of the long-wave phase speeds C,(O), 
m = 2,3,  ..., with the group speed Cg,(k) is prominent. The resonance bandwidth is 
quite broad and occupies a significant range of wavenumber space. The results for 
this model also have important implications regarding a single internal-wave mode 
governed by (2.5) in the off-resonant bands. It has been established (cf. Hasimoto & 
Ono 1972) that a periodic wavetrain solution of (2.5) is unstable to modulational 
disturbances whenever A v  c 0 and that the growth rate of these disturbances is 
proportional to the absolute value of the coefficient v. Reference to figure 1 shows that 
the curvature A of the dispersion curve has several reversals in sign as k increases. 
Since v in general does not change sign at the same values of k, modulationally un- 
stable bands can be expected to abound in any realistic oceanic environment. The 
product A v  also changes sign at  those wavenumbers where v has a simple zero and the 
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magnitude of v can achieve rather large values, even in the non-resonant bands. 
Hence, the growth rate of the side-band instability can be quite large. Another point 
worth emphasizing is that the mean flow (or long-wave component) driven by an 
internal wave packet (cf. equations (2.11) and (2.12)) will be strong in those regions 
where the vertical gradient of the Brunt-Vlishla frequency is large. Such regions 
abound in most natural thermoclines. 

In  the vicinity of those resonant bands where COe(k) 21 C,(O), a consistent 
asymptotic solution of equations (2.1) and (2.2) has the form 

$ = €QI(Z)(S(5,7)E+S*E-’)+€*@(Z)L(f,?)+ ... (2.13) 

(2.14) c = E - N ~ $ ( S E + S * E - ~ ) + E * - @ ( Z ) L ( ~ , ~ ) +  ... . 

The short-wave envelope function is here denoted by IS(&?) and the long-wave 
amplitude by L(5,7). The function $(z )  satisfies the same eigenvalue problem (2.6) 
aa before, but @(z) is a free long-wave mode satisfying the homogeneous form of 
(2.11). Solvability requirements at the next order in the expansion yield the evolution 
equations 

is, + ASssS = V,SL + O(&, (2.15 a)  

L, = a(pI2)[+ O ( 4 ,  (2.15b) 

and 
k N2 

w c, 

where now and 7 have definitions 

f = S ~ ( X  - C, t ) = X - C, T, 7 = dt = dT. (2.16) 

The time scale here is O(s-t) compared with 0(c2)  for the single-mode case described 
by (2.5). This evolution system shows that the long wave, which is of order E )  compared 
to the short wave, is generated by spatial gradients in the envelope of the short wave 
and the short wave is detuned and modulated by the interaction of itself with the 
long wave. These equations represent the appropriate limit of the resonant three- 
wave interaction equations when one member of the triad is very long and the other 
two members are only slightly separated in wavenumber space. The coefficients v1 and 
a in (2.15) are given by the following quadratures: 

v1 = - k(CICg)2 IO1 [(l-%) ( 1 + 2 2 )  N2$2@’+(1+2) Q12@(N2)’]dz (2.17) 
2 1  N2q52 dz 

0 
and 

cg’c Jol[(l-%) (1+2%) N2@(~2) ‘ -2d6~2(NP) ’ ]dz .  C (2.18) 
2IO1 N2Q2ds 

The coefficient A has tho same definition as before. 
For our later discussion of experimental results, it  is important to consider the 

linear stability of a uniform wavetrain solution of the coupled system (2.15). Hence, 
we write 

(2.19) = So{ 1 + s(5, T ) }  exp{ - iv, Lo?}, L = Lo{ 1 + Z(5, T)} ,  
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FIUURE 3. Lineer stability diagrem for long-wave-short-wave resonance equations. 
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FIQURE 4. Numerically computed evolution of short-wave envelope; stable caw. Initial condi- 
tions: S = l+S+eicf+S-e-ich; K = 2-26, L = 0. 
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FIGURE 6. Numerically computed evolution of short -wave envelope; unstable c w .  Initiel 
conditions: S = 1 +S+eiKE+S-e-fxE; K = 2.10, L = 0. 

where s(& 7 )  and I ( [ ,  7 )  represent small perturbations to the uniform wavetrain and 
So and Lo are order-one constants. After writing 

(2.20) S = S+exp{i(Ks- a~))+t?-exp{-i(Kl- Q*T)} 

and substituting into the evolution system and linearizing, one obtains the eigen- 
value relation 

(2.21) 0 3 -  ( K ~ A ) ~ Q  - 2 V 1 a ~ ~ 3 ~ ~ , ~ *  = 0. 

The uniform solution is found to be unstable whenever the condition 

3$1v1as) ]Solz > A2K3 (2.22) 

is satisfied. Observe that one can always find a modulation wavelength long enough 
to satisfy the instability criterion. Furthermore, when the dispersion A tend8 towards 
zero, a common occurrence in environments with variability in N ( z )  as evidenced in 
figure 1, any modulation wavelength destabilizes an internal wave and, in fact, does 
so even for very small primary-wave amplitudes. Observe also that the instability 
criterion is independent of the long-wave amplitude. Hence, a resonant long wave is 
unstable with respect to, and can be generated by, sufficiently long modulations of 
the short wave. It is important to point out that the instability is unidirectional in 
the sense that the long wave cannot generate the short wave if the short wave is 
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Nondimensional time, r 

0 2 4 6 8 10 
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FIGURE 6. Numerical solution to resonance equations demonstrating near recurrence. Initial 
conditions: S = 1 +S+eiKE +S_e-"f; K = 1.51, L = 0. 

initially zero. The growth rate for the unstable mode of (2.22) is presented in a univer- 
sal form in figure 3. The wavenumber K and frequency L2 have been normalized so 
that the eigenvalue relation assumes the form 

0 3  - K4Q + 4K3 = 0, 

(2.23) 

The maximum normalized growth rate is 1.42 occurring at a wavenumber of 1-51. 
The unstable range is 0 < K < 2) x 3* = 2.182 in terms of the normalized variables. 

The long-time behaviour of the modulational instability described above has been 
investigated by numerically solving the normalized version of (2.15) 

is, -F Sf[ = SL, L, = - 2( ISl". (2.24) 

The normalization used here is consistent with the growth-rate characteristics shown 
in figure 3 and the eigenvalue relation (2.23). The numerical scheme used to integrate 
these equations is the time-stepping leap-frog method described by Fornberg (1977). 
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Effect of initial modulation amplitude upon long-wave evolution. Initial condions: 
S = l+S+e'KE+S-e-iKl: K = 1.51, L = 0. 
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FIGURE 8. Effect of initial modulation wavelength upon long-wave evolution. Initial conditions: 
S = i+S+eixE+S-e-iKf; ~tj'~mx-~S~mh = 0.01, L = 0. 
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FIGURE 9. (a) Three-layer model. (a) Linear eigenvdue solution for three-layer system. 

Figures 4 and 5 show calculations for initial modulation wavenumbers of (2.25) and 
(2.10). The first case is stable on a linear basis and the second case is unstable. The 
long-time evolution confirms that K = 2-182 is the stability boundary. The calcula- 
tions also show that the initial growth rate agrees well with linear theory, but decreases 
as the modulation grows. We have also investigated the effect of the initial modulation 
amplitude ASo and wavelength 2 n / ~  on the long-time evolution. The initial conditions 
are characterized by the expressions 

AS0 = l%lax- ISlmin, 

S(& r = 0) = 1 + S, eiYE + 8- e-"c. (2.25) 
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The initial long-wave amplitude is taken to be zero since it results only in a constant 
frequency shift of the short wave and can be removed by a simple scaling. Figure 6 
shows the results of a calculation where near-perfect recurrence was observed. The 
recurrence time was about 6 non-dimensional time units for the case where the initial 
condition corresponds to the most unstable one on a linear basis. Figure 7 shows the 
effect of the initial modulational amplitude on the evolution of the long wave holding 
the disturbance wavelength fixed. The results are interesting in that the total energy 
deposited into the long-wave mode by the resonance mechanism is very insensitive 
to the initial perturbation amplitude. However, the recurrence time does depend on 
hs,. In  figure 8, the effect of the perturbation wavelength on the evolution of the 
long-wave mode is exhibited. The initial growth rate is greatest for K = 1.61, which is 
consistent with linear theory. However, the energy transport to the long wave is 
greater for the longer perturbation K = 0-75, although the time required to achieve 
saturation is shortest for the linearly most unstable disturbance. The strongest inter- 
action on the long-time scale is therefore seen to depend intimately on the nonlinear 
coupling and is not well described by the linear theory. 

Probably the simplest environment in which to explore this interaction experi- 
mentally for internal waves is a three-layer system of homogeneous fluids having 
different densities, as shown schematically in figure 9(a) .  By a proper choice of the 
various densities and layer thicknesses, one may ‘tune’ the system to a resonant 
condition whereby the group velocity of the shorter mode and the phase velocity of 
the longer mode are nearly equal, Thus, all of the physics relevant to the long-wave/ 
short-wave resonant interaction are contained in this simple configuration while many 
extraneous processes like multi-modal interactions, etc., which could occur in a con- 
tinuously stratified system are eliminated. The three-layer dispersion diagram for the 
experimental test conditions is shown in figure 9 (b), where the long-wave/short-wave 
resonance condition is identified. The derivation of the inbraction coefficients in 
(2.15) for this system, as well as the generalization of the long-wave equation to off- 
resonant conditions, is presented in the appendix. As shown there (cf. equation (A 8)),  
the generalized long-wave equation for this flow model is 

9wLT = Ba(lS12)XXXXX’ 

Here, ZW is a fourth-order wave operator 

(2.26) 

corresponding to long waves propagating in both directions on both interfaces. The 
speed C,  is the long-wave phase speed for a given mode and C12 (C2J are the respective 
long-wave phase speeds when the lower-layer (upper-layer) thickness vanishes so 
that the system reduces to a two-layer one. Rewriting this operator in terms of the 
convecting co-ordinates (2.16) and assuming that C,  is close to Cg and C23, say, but 
removed from C12, we may approximate the operator by 

(2.28) 

Note that this approximation becomes l ~ s s  exact as the system moves away from 
resonance. One useful aspect of the experimental study is to define the bandwidth 



IR
 p

ro
be

s 

Su
rf

ac
e-

w
av

e 

Fr
es

h 
w

at
er

 
33

.9
1 

cm
 

t 
1

 

t 
I 

u
 

r u
-

 
p
 

K
er

os
en

e 
8.

32
 cm

 
-
-
-
-
L
 

2
9

4
5

cm
 
-
 

p
=

 1
.1

55
 

50
 c

m
- 

B
ar

ri
er

 a
t x

 =
 0

 
W

av
e 
-
 

Sa
lt 

w
at

er
 

ge
ne

ra
to

r 
5.
00
 c

m
 

p 
=

 1
.1

90
 

ab
so

rb
er

s 
z 

C
o-

or
di

na
te

 s
ys

te
m

 

-6
m

 

(0
 ) 

F
I
O
U
R
E
 lO

(a
).

 F
or

 l
eg

en
d 
se
e 

p
. 

38
0.

 



380 C. G. K o q  and L. G. Redekopp 

(b ) 

Forced response of  
lower interfacial wave 

Upper interfacial 
free wave 

Lower interface 

Lower interfacial 
free wave 

Forced response of  
upper interfacial wave 

(ii) 

k-) 
FIGURE 10. Schematic representation of (a) the internal-wave facility and (b )  the two-wavemaker 
configuration. (0)  Three-layer eigenfunctions: (i) schematic representation of mode-1 and mode-2 
eigenfunctions; (ii) schematic representation of interfmial displacements when both modes are 
present. 
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for which this near-resonance theory (i.e. equation ( 2 . 2 8 ) )  is valid. From equation 
(2 .28) ,  the bandwidth of the resonance is O($). Thus, within this region the general 
long-wave equation, given by equation (2.27), may be approximated by the expression 

(2.29) 

This is the form of the equation referred to subsequently for use in correlating the 
theoretical and experimental results. 

3. Experimental results 
The preceding analysis has identified an interesting modal interaction which 

describes how energy initially deposited into waves of relatively short horizontal 
extent may be transferred to higher-order internal wave modes of significantly longer 
wavelength. In  the present section, we present the results of an experimental investi- 
gation of this interaction in an idealized situation, so that detailed comparisons with 
the theory may be made. 

3.1. Experimental apparatus and procedure 

The experiments to be described were performed in the internal wave facility shown 
schematically in figure lO(a). The wave tank, constructed from reinforced &-inch 
Plexiglas, has an overall length of 6 m with a 45 x 60 cm cross-section. The fluid 
medium chosen to study the long-wave/short-wave resonance phenomenon consists 
of three mutually immiscible homogeneous layers created using (in order of increasing 
density) fresh water (pl = 1.001, h, = 33.91 cm), a mixture of Freon and kerosene 
(p2 = 1-155, h, = 8.32 cm), and saturated salt water (p, = 1-19, h, = 5-00 cm). For 
the specific densities and layer thicknesses chosen, the two internal modes for this 
system correspond to a high-frequency short wave, propagating on the upper inter- 
face, and a low-frequency long wave which propagates on the lower interface. The 
eigenfunctions corresponding to each of these modes is shown schematically in 
figure lO(c), where i t  is seen that the high-frequency wave has no zero crossings (i.e. 
a mode 1 wave), and the low-frequency disturbance has one zero crossing (i.e. a mode 2 
wave). Figure 10 (c) also shows the qualitative appearance of the two interfaces when 
both modes are present. Note that a direct measurement of the energy contained in 
the mode 1 disturbance may be made by high-pass filtering the upper interfacial signal 
to remove the forced long-wave response. Similarly, one may measure the energy 
content of the mode 2 wave by low-pass filtering the lower interfacial signal to remove 
the forced short-wave response. 

As previously mentioned, the primary interest in this experimental study is the 
generation of a low-frequency long wave by a modulated high-frequency wavetrain. 
In  the present context, this implies that one is interested in generating modulated 
wavetrains on the upper interface by some mechanical means, and studying the 
hydrodynamic response of the lower interface to this forcing. The wavemaker utilized 
to generate such a modulated wavetrain is B modification of the displacement-type 

13-2 
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(b 1 
FIU~RE 11. Schematic diagram of ‘Scotch yoke’ used to generate modulated wavemakcr 

displacement. (a) Rotating cam drive. ( b )  Cam follower. 

device used by Koop & Butler (1981). Essentially, the wave generator consists of a 
5 x 15 x 45 cm wave paddle which straddles the upper interface and oscillates sinu- 
soidally in the vertical direction. The wave paddle is coupled to a drive motor through 
a Scotch yoke (see figure 11). Since the amplitude of the interfacial waves generated 
by this motion is proportional to the stroke of the displacement, one may modulate 
this wavetrain by varying the eccentricity of the cam motion in some periodic fashion. 
This is accomplished by using a second drive motor mounted on the rotating cam 
(and receiving power through two slip rings) to sinusoidally vary the radial distance 
of the cam from the axis of rotation. 

The typical operating conditions for this wavemaker were such that the modulation 
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period was fixed at  12.83 s, and carrier waves having periods TqR7, ranging between 
1.1 and 1.925 s were generated. Tests conducted to evaluate the constancy of the 
wave-generator frequency revealed that roughly 99 yo of all the energy lies in a band- 
width of less than & 0.3 % of the centre frequency. Furthermore, it is noted that the 
upper interfacial wavetrain exhibited none of the self-modulation characteristics 
observed by Yates (1978) in a similar modal interaction experiment. 

Returning to an examination of figure 10 (a) ,  i t  is observed that a barrier is present 
on the bottom of the tank which prevents the Freon-kerosene/salt-water interface 
from extending all the way to the wavemaker. This was done to ensure that the lower 
interface could not be forced directly by the pressure field associated with the upper 
interfacial wave generator. The presence of this barrier also provides a well-defined 
spatial origin for the interaction being studied. Although the bulk of the experimenta- 
tion to be discussed in this report was performed in this configuration, it is noted 
that a limited number of preliminary experiments were performed with the barrier 
removed. In  those runs, a second wavemaker was utilized to generate low-frequency 
waves on the lower interface. This was done in order to study qualitatively the inter- 
action between a pre-existing long wave and an initially unmodulated short wave. 
Figure 10 (b) shows schematically bhis two-wavemaker configuration. 

Figure 10 (a) also shows the wave absorption devices which were positioned at the 
downstream end of the tank. Note that each interface has its own wave absorber. The 
absorber located on the upper interface proved to be very effective at dissipating the 
short-wave energy. Using isolated packets of short waves and measuring the amount 
of energy reflected off the wave absorber, it was ascertained that more than 99.8 % of 
the short-wave energy is dissipated by the wave absorber. In contrast, however, one 
finds that the low-frequency wave motion associated with the lower interface is not 
nearly so easily removed. Tests revealed that only about 75 % of the incident long- 
wave energy is dissipated in the wave absorber. The remainder reflects back into the 
test section, propagates upstream (slowly dissipating by viscosity), reflects off the 
barrier, and once again propagates downstream. Although this problem of long-wave 
reflection is of some concern it is almost unavoidable in the present system, since a 
wave absorber designed to dissipate such long waves would occupy an unduly large 
portion of the test section. For the present, we simply note that the problem exists, 
and the approach taken to alleviate this difficulty will be discussed in a subsequent 
section. 

The primary diagnostic tool used in this experiment was a newly developed infra- 
red optical interfacial-wave amplitude gauge. A complete discussion of this sensor is 
given in Koop, Rungaldier & Sherman (1979). The motivation for developing this 
new gauge came during the preliminary stage of the study when it became clear that 
the conventional capacitance-type gauges of the type described by Lake et al. (1977) 
were unsuited for the type of internal-wave measurements desired. The principal 
difficulty seemed to stem from the erratic dynamical behaviour of the fluid meniscus 
in contact with the probe (this was especially true when the density difference across 
the interface was very small). Some of the troublesome aspects encountered were d.c. 
drift, nonlinearity, hysteresis and sensitivity changes. 

In  the present optical sensor, an infrared emitter is positioned above the interface, 
and a detector below, as shown schematically in figure 12. Since water is a very good 
absorber of infrared energy, the radiative intensity measured by the detector is a 
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FIGURE 12. Schematic diagram of infrared interfacial wave gauge. 

function of the vertical location of the interface which varies according to the wave 
motion propagating on the interface. 

The probe arrangement for this investigation is shown in figure lO(a). Probe I is 
an IR probe positioned 60.5 cm downstream of the wavemaker to monitor the initial 
wavefield on the upper interface. Also located at this position is a surface wave 
capacitance gauge which was included to monitor the effectiveness of the surface 
wave damper. In  addition to these sensors, four IR probes (two on each interface) 
were mounted on a movable platform. The probes, identified as l u  and 2u, monitor 
the upper interfacial displacements, and are longitudinally displaced by 29.85 cm. 
The second pair of probes, identified as 11 and 21, monitor the lower interface and are 
longitudinally displaced by the same amount. Probes lu  and 11 are separated by 
6-96 cm. Finally, a linear variable displacement transducer (LVDT) is used to monitor 
the displacement of the wave generator. 

For the particular choice of p,, p , ,  p3 ,  h,, h,, and h, shown in figure lO(a) and for a 
long-wave period TLw = 12.83 s, the condition for resonance between the long wave 
and the short wave occurs when the short-wave period is Tsw = 1.63 s. In order to 
study both the resonant interaction, and also some off-resonant conditions, nine test 
cases were chosen having short-wave periods ranging between 1.1 < Tsh d 1.925 8.  

The long-wave period (or modulation period) was kept fixed. For all of these experi- 
ments, the initial amplitude of the wavetrain (not the wavemaker displacement) was 
fixed at  roughly 1 cm (peak-peak), and the modulation amplitude was fixed at  
roughly 0.1 cm. One should remember, however, that, because the short-wave group 
velocity is a function of Tsw, the wavelength of the modulation varies from case to 
case even though TLw is held fixed. All of the test conditions are tabulated in table 1. 

The test procedure followed in this investigation has two parts. The long-wave/ 
short-wave resonance phenomenon under study arises through an interaction between 
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Case 

1 
2 
3 
4 
6 
6 
7 
8 
9 

c G 8 W  

6.2 
6.66 
7.20 
7.76 
8-45 
9.10 
9-56 

10.20 
11.20 

 mod (om) 
79-6 
86.3 
92.4 
99.4 

108.4 
116.8 
122.5 
130.9 
143.7 

TABLE 1. Tabulation of experimentel test conditions. 
TLw = 12.83 8, C,, = 9.23 om 8-1 for all cases. 

a forced modulated wavetrain (mechanically generated by the wavemaker) and the 
hydrodynamically generated lower interfacial wave. Before proceeding to investigate 
this coupled system, it is first useful to examine the nature of the energy source for 
the interaction (viz. the upper interfacial wavetrain) in the absence of any coupling 
with the lower layer. For each value of Tsw, then, the first part of the test procedure 
was to survey the spatial evolution of the unmodulated wavetrain aa it propagated 
through the test section. This was done primarily to measure the viscous decay rate 
for each case, as well as to examine the lateral structure of the carrier waves. Because 
the wavetrain was unmodulated, one did not have to be concerned about inter- 
actions with the lower interface, and the carrier waves propagated as free waves. The 
measurements were performed at 27 stations, separated longitudinally by 10.16 cm 
between 0 < x c 280 cm. At each station about 4 min of data were taken, after which 
the probe carriage was translated to the next station. Note that, since probes lu and 
2u are displaced by roughly 30 cm, three translations result in probe lu  occupying 
almost the same longitudinal position that probe 2u occupied at an earlier time. This 
feature allows for a very useful check on the repeatability and stationarity of the 
measurements, since at a given longitudinal position one has two measurements made 
by different probes at different times. 

The second part of the test procedure was to study the long-wave/short-wave 
interaction. For each case, the wave generator produced a modulated wavetrain, and 
data were taken on both interfaces for 12 minute intervals (corresponding to roughly 
50 modulation periods) at 16 longitudinal stations separated by 15-25 cm between 
0 < x < 280 cm. Note that, as in the dissipation measurements, a check on the 
repeatability of the data exists, since two translations result in probe l u  (or 11) occupy- 
ing the same position that probe 2u (or 21) occupied at an earlier time. Typically, two 
days of experimentation were required to complete each of the nine test cases. 

The outputs of all seven sensors (four carriage-mounted IR probes, IR probe I, the 
surface wave capacitance gauge, and the wave generator LVDT output) were moni- 
tored on an 8 channel oscillograph and recorded on a 14 track F M  tape recorder. All 
of the subsequent data reduction was completed by replaying the taped data and 
using analog devices for processing. 



386 C .  Q. Koop and L. G. Redebpp 

1.2 

h 0.8 
3 

I 1 I I 1 I I I I 
0 40 80 120 160 200 240 280 

x(cm) 

0 40 80 120 160 200 240 280 
x(m) 

FIUUEE 13. Spanwise average of short-wave peak-peak amplitude asw(z) va. z. (a) Taw = 1-3 s; 
(a) Taw = 1.5 s. 0, measurements; -, best least-squares fit of the form 

aew(4 = asw(z = 0) exp ( - & V A .  

3.2. Viscous dissipation 
For each of the nine test conditions identified in table 1, a series of measurements 
were made to determine the extent of the viscous dissipation of the upper interfacial 
wavetrain. Figure 13 presents results for the cases Tsw = 1.3 and 1.5 s. To minimize 
the effects of any lateral structure, these measurements represent spanwise averages 
obtained by slowly traversing (3-4 min/traverse) the wave gauges across the tank.? 
Using these and similar data, a short-wave dissipation constant, D,, may be defined as 

asw(x) = as& = 30 cm)e-Dfl’cg, 

where usw(x) is the spanwise averaged peak-peak amplitude of the short-wave mode, 
and x = 30 em represents the first measuring station. 

Within the range of operating conditions, D, varied between 0-015 c D, < 0-035 s-l. 
In terms of wave attenuation, this corresponds to amplitude decreases through the 
test section of between 30-80 yo. It is significant to note here that, particularly for the 
higher-frequency waves, viscous dissipation has a non-negligible effect upon the short- 
wave amplitude. In the resonant interaction model, however, such effects are not 
included. Clearly, some modification to the inviscd theory will be required if detailed 

t Although we will not pursue the topic here, these data also revealed the existence of an 
interesting modulation structure in the apanwise direction (even though the wave generator was 
programmed to maks uniform wevetrains). Subsequent tests revealed that such spanwise struo- 
ture had little or no effect upon the long-wave/short-wave resonant interaction under investiga- 
tion, so that further discussion of this phenomenon is not deemed warranted here. However, 
in a separate paper (Koop 1981) the character of this  spanwise modulation is discussed in more 
detail. 
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FIQURE 14. Example of modal interchange of energy. 

quantitative comparisons with the data are to be made. This problem will be returned 
to subsequently. 

3.3. Long-wavelshort-wave interaction; qualitative results 
The theoretical analysis described in $ 2  provides a framework for interpreting the 
experimental results of the resonant interaction of two internal wave modes of 
disparate length and time scales. The basic conclusions one draws from this theory 
are that at resonance the long wave is forced by spatial gradients in the short-wave 
envelope, and the dispersion of the short-wave mode is balanced by a nonlinear inter- 
action with the long wave. Furthermore, the theory predicts that the interaction may 
proceed in either of two ways: 

(a)  A modulated short wave acts as an energy source for the growth of the long 
wave. In this case, the larger the spatial gradients of the short-wave envelope, the 
stronger the interaction. 

(b) A pre-existing long wave acts to modulate an initially uniform ahort-wave 
w avetrain . 
Clearly, a t  certain phases of the interaction, both of these effects will be important. 
Before proceeding to a detailed discussion of the experimental measurements, it is 
worth while to present some qualitative results which demonstrate some of the 
important features of the resonant interaction. Typically, the experiments were 
performed by generating a modulated wavetrain on the upper interface and observing 
the hydrodynamic response of the lower interface to this wave-induced forcing. 

, 
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FIQURE 15. Effect of modulation amplitude upon mode-2 wave. 

Figure 14 shows an oscillograph record of such an experiment performed near the 
resonant period T,, = 1.65 s. From the first trace in this figure, depicting the wave- 
maker displacement, one sees that initially the wavemaker was generating a uniform 
wavetrain. Subsequently, the modulation was turned on for a period of about 6 min, 
after which the modulation was again turned off. The second trace shows the upper 
interfacial wave form, and the third trace shows the internal displacement of the 
lower interface. Finally, the last trace presents the lower interfacial data after it has 
been amplified and low-pass filtered to eliminate the carrier wave frequency. From 
these data, one can clearly see that initially, during the period of time when only a 
uniform wavetrain was being generated, the lower interfacial signal simply represented 
the forced response to the wave on the upper interface at  the carrier wave frequency. 
Once the modulation is turned on, however, a low-frequency wave is generated on 
the lower interface by the spatial inhomogeneity of the carrier wave envelope. This 
lower interface wave has the frequency of, and is phase-locked to, the modulation. 
When the modulation is removed, this component of the lower-layer signal disappears. 

On the baais of the theoretical discussion presented in 5 2, one anticipates that the 
magnitude of the lower interfacial wave resulting from this resonant coupling should 
scale with the magnitude of the short-wave envelope spatial inhomogeneity. This is 
demonstrated in figure 15 where one finds that a doubling of the modulation ampli- 
tude, keeping the short-wave peak-to-peak amplitude fixed, results roughly in a 
doubling of the long-wave amplitude. 

Figure 16 shows the result of a single-pulse experiment. Here one finds that an 
initial burst of high-frequency internal-wave energy can result in the production of a 
single, well-defined low-frequency wave. The shape of this long-wave component has 
the same general appearance as that of the derivative of the short-wave envelope; 
a result which may be anticipated from the resonance equations. Figure 17 shows the 
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FIUURE 16. Ezample of a single-pulse experiment. 

results of a similar experiment, except that in this situation the modulation is a 
negative pulse (sometimes called a ‘dark pulse’). As anticipated from the theory, one 
finds that the character of the long wave generated by this short-wave envelope is 
similar to that of the previous pulsed experiment, except that the sign of the long 
wave is reversed. 

Finally, figure 18 presents a case where the roles of the mode 1 and mode 2 dis- 
turbances are reversed. In  the previous examples, energy transfer has been pre- 
dominantly in one direction, proceeding from the modulated carrier wave to the 
lower interfacial long wave. Figure 18 demonstrates, though, that this interaction 
can also proceed in the opposite direction. In this configuration (shown schematically 
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FIGURE 17.  Example of a 'dark-pulse' experiment. 

in figure lob) a pre-existing long wave (produced mechanically, rather than hydro- 
dynamically) acts to generate modulations in an initially uniform carrier wave. This 
type of behaviour is quite similar to the internal-wave/surface-wave interaction 
studied by Lewis, Lake & KO (1974). Figures 14 and 18 suggest, a t  least qualitatively, 
how the resonant interchange of energy between the mode 1 and mode 2 waves may 
oscillate on a time scale which is long relative to the modulation time. Conceptually, 
what one might expect is that an initially modulated short wave acts to feed energy 
into the production of a long-wave component. Eventually, the energy contained in 
the long wave grows to a significant fraction of the carrier wave energy. A t  this point, 
the energy flow reverses through the detuning effect that the long wave has on the 
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FIGURE 18. Modulation of a uniform carrier wave by 8 pre-existing long wave. 

carrier wave. The numerical solutions previously presented (figure 6) clearly show 
that the long-wave/short-wave interaction equations admit solutions exhibiting such 
recurrence. 

In  summary, the qualitative results presented in this section demonstrate: 
(a) mode-2 long-wave generation is dependent upon spatial gradients of the mode- 1 

(b) larger modulations in the carrier-wave envelope produce larger-amplitude 

(c) a single burst of high-frequency energy can produce a single, well-defined wave; 
(d ) the interaction may proceed in either of two ways, viz. energy transfer from a 

modulated short wave to the long wave as well as energy transfer from a pre-existing 
long wave to a mode-1 carrier wave; 

carrier-wave envelope ; 

mode-2 waves; 

3.4. Long-wavelshort-wave interaction; quantitative results 
In  the previous section we have presented evidence which demonstrates in a qualita- 
tive fashion how many of the important features of the long-wavo/short-wave resonant 
interaction anticipated from the theory are experimentally observed. The degree to 
which this theory is quantitatively correct is the subject of the present section. As 
previously described, the procedure followed was to generate mechanically a modul- 
ated wavetrain on the upper interface, and observe the resulting hydrodynamic res- 
ponse of the lower layer. Measurements were made for 12 min intervals on the channel 
centre-line a t  16 longitudinal positions for each of the 9 test cases identified in table 1. 

For each 12-minute data record the long-wave amplitude was determined by playing 
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FIQURE 19. Phsse-lagged sum (PLS) data for T,, = 1.3 s. 0,  probe 11; 
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the tape-recorded signal from probe 11 (or 21) into a spectrum analysert and inte- 
grating the power in the neighbourhood of the long-wave frequency. 

Using spectral measurements, we investigated the spatial evolution of the long- 
wave component as a function of the longitudinal co-ordinate for each of the nine test 
conditions. The results for Tsw = 1.3 s are shown in figure 19, where data from 
both of the lower interfacial probes (11 and 21) are presented. One may recall from 
previous discussion ($3.1) that for a fixed position the two probe measurements are 
separated in time by roughly thirty minutes. Hence, a comparison of the two sets of 
data constitutes a good check on the repeatability and stationarity of the measure- 
ments. In  examining figure 19, one may say that the two measurements ehow reason- 
ably good agreement, and both tend to show that a rather well-defined standing-wave 
pattern exists. Based upon previous discussion regarding the partial reflection of 
long-wave energy off the lower interfacial wave absorber (Q 3. l),  however, this result 
is not unanticipated. The problem one faces here is that in order to study the long- 
wave/short-wave resonant interaction, it is necessary to discriminate between the 
wave propagating downstream (which is receiving energy from the modulated carrier 
wave) and the upstream propagating wave (which reflected off the wave absorber and 
is slowly decaying under the action of viscosity). This discrimination between the 
two waves was partially accomplished in the following manner. The lower interfacial 
IR probes are longitudinally displaced by 29.85 cm. The wavelength of a free wave 
on the lower interface having a period equal to that of the modulation is 118.4 cm. 
Assuming that the standing-wave pattern observed in figure 19 is generated by the 
linear superposition of two waves propagating in opposite directions, the long-wave 
component of the lower interfacial displacement field, vLw(x, t), may be represented 
by the expression 

qLR(x, t)  = a, cos(kLWx- uLwt) + a2 cos (kLwz+ wLwt+ #), 

t The particular spectrum analyser used (Rookland, model FFT 512/S) hed the capability 
of digitally integrating the area bnder the spectrum between any two arbitrarily determined 
frequencies. 
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FIGURE 20. Comparison of the phase-lagged-sum measurements with the numerically computed 
evolution of the long-wave component. (a) Taw = 1.1 8 ;  ( b )  T,, = 1.2 8 ;  (c) Taw = 1.3 8 ;  

(d )  Taw = 1.4s; (e) T,, = 1.4s;  (f) Taw = 1.63s; (9)  TNW = 1-7 8 ;  (h) T,, = 1.8s;  (i) 
T,, = 1-9 s. 0, data; -, computed. 

where a, and a2 are the downstream and upstream propagating wave amplitudes 
respectively, k,, and wLw are the long-wave wavenumber and frequency, and 9 is 
an arbitrary phase. Using this representation the signals from probes 11 and 21 
(separated by n/2kLw) are given by 

rlldt) = r l ( ” O , t ) ,  

rdt) = r (”o  + n/2k,w, t ) ,  

when rll(t) and rzl(t) are the signals from the respective probes. If we now define an 
operation whereby the signal from probe 11 is phase-lagged in time by an amount 
n/2wL, and added to the output of probe 21 (and dividing by 2) we obtain 

t{rll(t - 4 2 W L W  1 + rzl(t)> = a1 cos (kLW”0 - %W t + &74 
which is simply the downstream propagating wave phase shifted by n/2. Thus, the 
above operation (which for lack of a better name will be termed the phase-lagged 
sum or PLS) acts as a discriminator, and picks out that portion of the record which 
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FIGURE 20 (d-f). For legend see p. 393. 

corresponds to a downstream propagating wave. Figure 19 presents a comparison 
between the individual probe measurements and the PLS results. In  examining these 
two sets of data, one finds that the PLS technique virtually eliminates the standing- 
wave pattern, and describes the spatial evolution of a long-wave component which is 
growing with longitudinal co-ordinate due to its interaction with the short-wave 
modulation. 

The PLS data for all of the experimental conditions are shown in figure 20. The solid 
curve through each data set represents the theoretical result which will be subse- 
quently discussed. One observes from the experimental measurements that the spatial 
growth rate of the long-wave component is a strong function of the short-wave 
frequency, with larger initial growth rates occurring at smaller values of Tsw. One 
also notes from these data that the long-wave amplitude does not monotonically 
increase with x, but rather appears to grow to a maximum and subsequently decay. 
This non-monotonicity in the long-wave component was not understood initially. One 
possibility considered was whether or not this decline in the long-wave amplitude was 
indicative of the transfer of energy from the mode-2 wave back into the mode-1 
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carrier wave. However, using numerical solutions to the resonant interaction equa- 
tions with an ad hoc viscous damping term, we believe that the observed attenuation 
in the long-wave component is primarily due to the viscous dissipation. Further 
discussion of these numerical results is deferred to the next section. 

Using the PLS measurements of figure 20, one may determine the magnitude of 
the initial growth rate of the long wave by calculating the derivative of a least-squares 
curve used to fit the data, evaluated at x = 30 cm (i.e. the first measurement station). 
The results are shown in figure 21 (a)  as a function of the carrier wave period. It is 
interesting to note here that the initial growth rate of the long-wave mode is not 
maximized at the resonant condition, but rather one finds larger growth rates at the 
higher frequencies. The reason for this somewhat non-intuitive result is discussed in 
the next section. Figure 2 1 ( b )  presents the maximum observed long-wave amplitude 
as a function of the short-wave period. 

Another measurement of interest in this investigation of the long-wave/short-wave 
resonant interaction is the phase relationship which exists between the short-wave 
modulation envelope and the long wave. This relationship was measured by cross- 
correlating the modulation envelope? with the lower interfacial PLS signal, and 

t The modulation envelope was obtained by squaring the upper interfacial signal and low-paas 
filtering. Extreme care was taken to account for phase shifts introduced by the filter. 
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measuring the time delay for maximum correlation. Figure 22 shows the results of 
this measurement for all of the test conditions. Here, the phase 0 is defined relative 
to the short-wave envelope such that, for 0 < 0 c 180°, the long wave leads, and for 
- 180' < 0 < 0' the long wave lags the modulation. At the resonant condition, 
Tsw = 1.63 8,  the initial long-wavelshort-wave phase relationship is roughly 112' 
with the long wave leading the modulation. This phase orientation is approximately 
maintained throughout the interaction. For T,, > 1.63 8,  the long wave lags the 
modulation by an ever increasing amount during the interaction, indicating that the 
modulation is propagating faster than the long wave. This result is not unanticipated, 
since for these case8 C,, < C,,,. As one would expect, for Tsw c 1.63 s, the reverse 
trend is observed. These results are useful, in that they demonstrate how only at 
resonance is the phase relationship between the short-wave envelope and the long 
wave unchanged during the duration of the interaction. For off-resonant conditions, 
the initial phase orientation is continuously altered during the interaction, due to the 
mismatch in the short-wave group and the long-wave phase speeds. 

3.5. Comparison of theory and experiment 

Before proceeding to a discussion of the comparison of the theoretical predictions 
with the experimental data, it is first necessary to discuss how the effects of viscosity 
may be incorporated into the present inviscid model. We have previously demon- 
strated ( §  3.2) that viscosity can have an important influence upon the amplitude of 
the short-wave mode, particularly for the higher-frequency waves. A non-negligible 
amount of dissipation also occurs for the long waves on the lower interface. Clearly, 
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if detailed quantitative comparisons are to be made between the theory and experi- 
ment, some attempt must be made to incorporate viscosity into the analytical model. 
This has been accomplished, albeit in an ad hoc fashion, by simply adding a viscous 
dissipation term with an empirically determined dissipation constant to each of the 
evolution equations. These modified equations are written as: 

iS, + ASs,, = VI LS - D, S, (3.1) 

where 

and 

In the absence of modal interactions (i.e. v = a = 0), these equations simply describe 
waves which are exponentially decaying due to the effects of viscosity. One note of 
caution which should be made here is that this viscous model is purely ad hoc. No 
attempt has been made to determine whether viscosity has any effects other than 
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pure amplitude attenuation which might be important during the interaction. These 
might include a viscous modification to the dispersion relation which would alter all 
of the coefficients, or boundary-layer effects which might alter the values of the 
coupling coefficients (which are essentially integrals of inviscid eigenfunctions). 

For the purpose of comparison with the data, equations (3.1) and (3.2) were solved 
numerically using the time-stepping leap-frog technique discussed by Fornberg 
(1977). The initial conditions for these calculations included the measured short-wave 
and long-wave amplitudes at x = 30 cm (i.e. the first measurement station) as well 
as the initial phase relationship between the long-wave and the short-wave modula- 
tion envelope. 

The single most important result of the long-wave/short-wave analysis outlined 
in $ 3  and detailed in the appendix is the determination of the nonlinear coefficients 
v1 and a' which appear in equations (3.1) and (3.2), respectively. For the present 
experimental configuration these coefficients have been evaluated, and their functional 
dependence upon the short-wave period T,, is shown (in dimensional form) in 
figure 23. For the present experiment, the coefficient in the long-wave equation is of 
greater importance, and hence we will focus our attention upon this quantity. 
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FIGURE 23. Coupling coefficients (a) v1 and (b) a' which appear in the short-wave and long-wave 
evolution equations, (3.1) and (3.2) respectively, versus 'Taw. 

Essentially, the coefficient a' measures the amplitude of the long wave or mean-flow 
portion of the upper interfacial wavefield which exists due to the slightly nonlinear 
nature of the short-wave wavetrain. In a sense, the term a'(lS12)E which appears on 
the right-hand side of the long-wave equation is not directly related to  resonance, but 
merely represents (at least initially) a forcing term in, the equation which arises due to 
the mean flow portion of the short wave. The concept of 'resonance ' enters when the 
propagation speed for this mean flow component (which is bound to the short wave, 
and hence propagates at  the short-wave group velocity) matches the long-wave phase 
velocity of some other mode; i.e. C, = C,. When this occurs, the long-wave forcing 
function a'(IX12)6 propagates a t  the same speed as the higher-mode long wave, and 
significant energy transport into this higher mode may be expected. At resonance, 
one anticipates that a particular phase orientation shall exist between the long wave 
and the envelope of the short-wave modulation such that the growth rate is maxi- 
mized. For off-resonance conditions, however, this preferred phase orientation cannot 
be maintained, since the forcing term and the long wave propagate a t  different speeds. 
This lack of phase stationarity will have a destructive influence upon the strength of 
the interaction. 

With these concepts in mind, we may discuss (at least qualitatively) what one 
would expect to observe experimentally as the period of the short wave is varied. At 
the resonant condition (Tsw = 1.63 s), where C, = C,, one anticipates that the long- 
wave component will grow initially at  the expense of the short-wave mode, and that 
a fixed phase relationship will be maintained between the long wave and the short- 
wave modulation envelope. From an examination of the long-wave equation, one 
concludes that (for a' > 0 )  at resonance the peak in the long wave should lag the peak 
in the short-wave modulation envelope by 90'. 

As one moves away from resonance, say towards smaller short-wave periods, 
several changes occur. First, one notes from figure 23 that as Tsw decreases a' in- 
creases. This simply implies that the mean flow part of the short-wave wavefield is 
larger at higher carrier-wave frequencies (essentially, the wave becomes more non- 
linear since increasing the frequency increases the maximum wave slope). A second 
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effect which occurs as one moves away from resonance is related to the change in the 
group velocity. One recalls that the experiments were performed in such a manner 
that the period of the modulation was held fixed between the nine test cases. However, 
as one decreases the short-wave period, one also decreases the group velocity, which 
decreases the wavelength of the modulation, and hence increases the magnitude of the 
spatial gradients of the modulation envelope. Since the long-wave interaction is 
being driven by these spatial gradients, a decrease in the short-wave period may 
actually result in an increase in the strength of the interaction. Combining the effects 
of these two processes, one arrives a t  the somewhat non-intuitive conclusion, that 
stronger interactions might occur at  off-resonant conditions. However, this result 
cannot be true indefinitely, for, as one moves very far away from resonance, the mis- 
match between the group and phase speeds also becomes large, and this will have a 
destructive effect upon the interaction. Furthermore, as T,, approaches zero the 
short waves must approach the deep water limit, and as shown by Djordjevic & 
Redekopp (1977)) the coefficient a' must go to zero. Hence, one concludes that, as 
Tsw moves away from resonance towards smaller wave periods, the strength of the 
interaction may initially increase, but for far off-resonant conditions the interaction 
strength must ultimately diminish. 

On the other side of resonance (i.e. T,, > 1.63 s) 01' decreases, the magnitude of 
the gradient of the modulation decreases, and the mismatch in the group and long- 
wave phase speed increases. The net combined effect of all of these processes is to 
diminish the strength of the interaction. 

The numerical solutions for the nine experimental test conditions, 1-1 < T,, 
Q 1.925 s, are presented in figures 20 and 22 as a function of longitudinal co-ordinate 
(time has been converted to distance using a group velocity transformation). In 
figure 20, the calculated evolution of the maximum peak-peak amplitude of the long 
wave on the lower interface is presented. Figure 22 presents the corresponding calcu- 
lations of the relative phase orientation between the long-wave and the short-wave 
modulation envelope. The convention adopted in these calculations is that a positive 
phase corresponds to the Iong-wave lagging the short-wave modulation. To facilitate 
direct comparison with the data, the long-wave amplitude computed in the program 
corresponds to the phase-lag-sum (PLS) definition described in 33.4. Several com- 
ments may be made regarding the results presented in these figures. 

For TSw = 1.1 s one observes in figure 20 that the initial growth rate of the com- 
puted long-wave amplitude is greater than what is observed in the experiment. At 
about x = 80 cm, this long-wave amplitude is maximized and subsequently decreases. 
At x N 180 cm a curious phenomenon occurs: the computed long wave once again starts 
to increase, achieves a maximum at x E 250 cm, and again decreases. The calculations 
for the case T,, = 1.2 s reveal the same qualitative behaviour, although the period 
of oscillation for this run is somewhat greater. None of this periodic structure is 
observed in the data. Examination of the computed phase relationships shown in 
figure 22 reveals the probable cause for this oscillatory behaviour of the long-wave 
amplitude. Initially, the phase orientation between the long wave and the short-wave 
modulation is 11 8" (the long wave lagging the short wave), which is close to the 90" 
phase relation most conducive for growth. However, because the mismatch between 
the group and phase speeds is so large for this case, this phase orientation changes 
rapidly. By x = 110 cm, the computed phase difference is 0", and a t  x = 150 cm the 
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long wave leads the short wave by 90". At this location, then, the phase of the long 
wave has been shifted by 180" from that orientation most conducive for growth. One 
intuitively expects that such a phase change can only have an adverse effect upon the 
energy transport into the long-wave mode. 

Comparing the results of the calculations in figures 20 and 22 with the experi- 
mental data for TSw = 1.1 and 1.2 s, one finds that the agreement is not very good. 
As has been noted, the data show none of the oscillatory behaviour of the long-wave 
component, and the initial growth rate is less than what is theoretically predicted. 
Examining the phase data for these two cases, one can see that the cyclical nature of 
the computed results arises because the predicted rate of change of phase is significantly 
larger than the observed. For example, in the experiment during the growth stage of 
the interaction, the phase of the long wave is never shifted more than 50" from that 
phase orientation which maximizes the growth rate. During this same interval, how- 
ever, the theory predicts phase shifts of 180" or more, which results in an attenuation 
of the long-wave amplitude at  certain locations during the interaction. This over- 
prediction in the rate at which the phase of long wave varies is believed to be directly 
related to the approximations which were made to reduce the order of the full fourth- 
order long-wave operator to a first-order system, as discussed in $2. As was noted 
there, for small deviations from resonance the approximations used to reduce the 
order of this operator should be valid, but for far off-resonant conditions one should 
solve the full fourth-order equations. Thus, even though the theoretical and experi- 
mental agreement is fairly poor for these two cases, the results are useful from the 
standpoint that they identify how far off resonance one may go before the first-order 
equations become inappropriate. 

For T,, 2 1.3 s, the qualitative agreement between the theory and the experiment 
is better. The initial growth rate of the long wave and the evolution of the phase 
orientation are seen to be in closer agreement. These conclusions are also generally 
true for those off-resonant conditions where T,, 1.63 s. The theory also predicts 
the observed equilibration of the long-wave amplitude at  some maximum value after 
the initial growth stage, although the actual amplitude at  this point is overestimated 
in the theory by as much as 50 yo. However, the fact that the program predicts this 
long-wave equilibration at all is in itself an important result. Initially, the observed 
non-monotonic behaviour of the long-wave amplitude was not understood. It was 
believed, for example, that the long-wave growth should persist for the entire length 
of the test section. Several possible explanations were explored, but from the numerical 
scheme it is almost certain that this equilibration in the long-wave amplitude is 
primarily due to viscous effects. Consider, for example, the data for the case 
T,, = 1.63 s. In  addition to the previously discussed calculations, a second numerical 
run was made with the viscous terms in equations (3.1) and (3.2) set equal to zero. 
The results, which are shown by the dashed line in figure 20, demonstrate that in the 
absence of viscosity the long wave continues to extract energy from the short-wave 
modulation over the entire range of x in which measurements were made. The 
inclusion of viscosity dramatically alters the character of the solution, and the results 
are more consistent with the data. 

Because the viscous terms are so important in the later stages of the interaction, 
one has to question whether the ad hoc viscous model used in the numerical scheme is 
really adequate accurately to describe the long-wave maximum-amplitude state. It 
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is quite possible, for example, that the over-prediction of the maximum long-wave 
amplitude by the numerical code is not a reflection of an inadequacy in the long-wave/ 
short-wave resonance theory, but rather due to our attempts to modify the analysis 
to include viscous effects. However, development of a more complete theory which 
incorporates viscosity into the problem at the outset is a formidable task, and such 
an analysis is not forthcoming in the foreseeable future. 

Some of the important features of the experimental and theoretical results shown 
in figure 20 are summarized in figure 21. The predicted initial growth rates of the long 
wave are presented as a function of the short-wave period in figure 21 (a). The experi- 
mental results are also shown here. The results are interesting in that much of the 
anticipated qualitative behaviour of the initial growth rate is corroborated. For 
example, at the resonance condition the computed long-wave growth rate is 
1.77 x cm/cm. As Ts, decreases, the growth rate increases due to the combined 
effect of the coefficient a' increasing and the modulation wavelength decreasing. This 
trend continues until T,, = 1.2 s. However, at  Tsw = 1.1  s, both the theoretical 
and experimental growth rates are smaller, indicating that the mismatch in C, and 
C, has become sufficiently large to diminish the effectiveness of the interaction. For 
Tsw > 1.63 s, a' decreases, the modulation wavelength increases and (Co- C,) in- 
creases, so that, as expected, the growth rate monotonically decreases. Comparing 
the theory with the experimental results, one finds good qualitative agreement 
especially when one notes that both predict a maximum in the long-wave growth rate 
at  T!, = 1-2 s. The quantitative agreement is fairly good around resonance, but gets 
progressively worse as Tsw decreases. As previously noted, however, this is probably 
due to the approximations made in reducing the order of the long-wave equation. 

Figure 21(b) summarizes the maximum amplitude state of the long wave as a 
function of the short-wave period. Again, there is fairly good qualitative agreement 
with the data, although in general the theory tends to overpredict the maximum 
amplitude. The degree to which these rosults would be modified by a more complete 
viscous theory is not known at  present. 

Another piece of information which is worth discussing is the degree to which the 
present analytical model may be used to choose a suitable normalization such that 
all of the data may be plotted in some universal form. We know, for example, that at 
resonance the form of the inviscid long-wave evolution equation is given by 

where 

4 'mod 

with a,, being the short-wave peak-peak amplitude, amod the modulation amplitude, 
and hmod the modulation wavelength. 

Thus, for amod/aSW < 1, the natural scaling for the interaction should be given by 

ULW , ?E = X/hmod. - 

anaSW amoda'/Cg 
aLw = 

Figure 24(a) shows the initial unscaled data, plotted over the range of x where the 
long-wave growth is fairly linear. In figure 24(b), these data are plotted in normalized 
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co-ordinates, ahd one sees that the above normalization does indeed collapse the data 
to a single curve. It is worth pointing out here, that this form of normalization is 
more than just dimensional analysis, since the coefficient a' which appears in the 
denominator is a function of Tsw, and must be computed for each set of data. 

One h a 1  piece of information which is worth while presenting, deals with the effects 
of viscosity upon the evolution of the interaction. In most of the calculations thus far 
presented, the various constants which appear in the equations have been chosen to 
simulate the experimental test conditions. One wonders, however, how the interaction 
would proceed in an inviscid fluid, where, due to the lack of dissipation, the inter- 
action could persist for distances which are unachievable in the laboratory. Figure 26 
presents one calculation made for an inviscid fluid. The system was assumed to be at 
resonance, and the calculation was carried out over a propagation distance of some 
36 m. Also shown here is the viscous calculation carried out to 2.8 m. In  examining 
the results shown in this figure, one is forced to conclude that in the present experiment 
only the very earliest stages of the interaction are capable of being investigated. 
Unfortunately, most of the interesting phenomena and the largest amounts of modal 
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long-wave component. T,, = 1.63 6. 

energy transport occur at  interaction distances far removed from what may be 
experimentally studied. It is interesting to note from this calculation, though, that 
some periodicity exists in the energy transfer to the long wave, with a wavelength of 
roughly 28 m. However, for the particular initial conditions imposed in this calcula- 
tion, perfect recurrence was not observed. 

4. Summary 
The analytical and experimental study which has been presented in this report has 

identified several aspects of internal wave propagation which arise due to nonlinear 
processes. The nonlinear Schrodinger equation, which has been shown to govern the 
evolution of a weakly nonlinear internal wave mode, becomes singular when certain 
resonant criteria are satisfied. In  one situation, a resonance was shown to be possible 
between the short-wave mode and a long wave of higher mode number. When these 
conditions occur, the problem must be reformulated, and the relevant description of 
the wavefield was shown to be governed by the so-called long-wave/short-wave 
resonant interaction equations. 

In general, the theorectical predictions are in qualitative agreement with the 
experimental results, particularly in regard to the ability of a modulated short-wave 
mode to transfer energy to a higher-mode long wave. The quantitative agreement 
between the theory and the experiment is in most cases reasonably good, although 
complications existed in making comparisons. These difficulties include trying to 
incorporate the effects of viscosity into an inviscid theory, and approximating a 
fourth-order partial differential equation by one which is first order, in order to 
facilitate the numerical solution. In general, however, we feel that the analytical 
theory has been reasonably validated by direct experimental comparison. 

The application of this resonant interaction theory to motions of geophysical 
interest are numerous. In the ocean, for example, it is widely known that the ambient 
internal wave field is dominated by longer wavelength low-frequency components 
with the majority of the energy lying within a few octaves of the local inertial fre- 
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quency. Energy in the short-wave modes will almost certainly be dynamically coupled 
to the long-wave ambient background through which it propagates. The time scales 
required for significant interaction to occur in general are not easily estimated, and 
direct numerical evaluation of the coupling coefficients in the resonant interaction 
equations for a given stratification is required. It is anticipated, however, that, because 
these coupling coefficients involve derivatives of the eigenfunctions and the Brunt- 
Vaisiilii distribution, in a highly structured stratification (which characterizes much 
of the ambient ocean) the magnitude of these coefficients might be sufficiently large 
as to require the inclusion of this resonant mechanism for an accurate description of 
the wavefield. Similar statements may be made regarding atmospheric wave motions. 
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Appendix 
In this appendix we study the interaction of a short and long internal wave propa- 

gating in a system comprised of three homogeneous layers having different density. 
This configuration is shown schematically in figure 9 (a). 

The equation of motion in each layer is Laplace's equation 

V2#( = 0, i = 1,2,3,  (A 1) 

where fi is the velocity potential. The boundary conditions to be applied are zero 
vertical velocity at the solid boundaries as well as the normal kinematic and dynamic 
boundary conditions at the two fluid interfaces. 

The displacement of the lower interface, with equilibrium position z = 0, is denoted 
by z = q(z,t), and that of the upper interface, with equilibrium position z = h,, by 

To construct the solution in the context of weak nonlinearities, we introduce the 
z = h, + 5(x, t). 

slow space and time scales 

and expand the dependent variables in the manner 

X = p ~ ,  T =pt,  

#i = S ~ , , ( X , z , T ) + e { f i ~ ~ ) ( X , z , T ) E + # ~ 1 ) * E - 1 } + ~ 2 { f i ~ 2 ) ( X , ~ , T ) E 2 + f i ~ 2 ) * ~ - 2 } +  ..., 
(A 2 4  

(A 2b) 5 = pSZ(X,T)+s{5(1)(X,T)E+5(1)*E-1}+s2{g(2)(X,T)E2+5(2)*E-~}+ ..., 
7 = p S N ( X ,  T) + s { f l ) (X ,  T) E + q(l)*E-1} + s2{q(2)(X, T) E2 + T,I(~)*E-~} + . . . , , '- (A 2c) 

where 
E = expi(kz-wt). 

In  these expressions k and w are the wavenumber and frequency of the short-wave 
mode with non-dimensional amplitude s; p-l is a meaaure of the wavelength of the 
long-wave mode and also the modulational length scale for the short-wave mode, and 
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p8 is the amplitude of the long-wave mode. The relative magnitudes of the three 
small parameters p, B ,  8 are unspecified at this stage; the choices leading to significant 
interaction between the two wave modes will be made after consistent asymptotic 
solutions for the various dependent variables have been constructed. 

Since Laplace's equation is linear, the general solution for each of the terms in 
(A 2a)  can be written down without reference to the nonlinear matching conditions. 
The relevant solutions are 

22 q5i1) = (A,ekz+ Bie-kz)-ipz(A,ekz-Bie-kz)x-p2- (Aiek2+B,e-kz),,+ ..., 
2 

$i2) = (Die2kz+Ir,e-2kz) -ipz(D,eZk~-~,e-2kz)~ - .;.. 

Expanding the terms in the interfacial conditions in a Taylor series about the 
equilibrium interface positions and then substituting the asymptotic expansions 
(A 2) together with the solutions (A 3) into these expanded expressions and the 
boundary conditions yields a series of complicated expressions relating the A*, B,, D,, 
etc., at  the boundaries and across the fluid interfaces. Considering only the leading- 
order terms in these expressions, one obtainsthe dispersion relation given by: 

(I-?) ( 1 - g ~ ) -  Pe Tl p2T3 ( l - T i )  = 0, ' w2 P2Tl+ P1T2 P2T3 + P3T2 
where 

Ti = tanh khi. 

This equation is quartic in w ,  the four solutions corresponding to waves travelling in 
both directions on both interfaces. 

At next order, one obtains conditions for the long-wave terms which can be com- 
bined to yield the single long-wave equation: 

where fi = hi&,, i = 1, 2, 3, and the interfacial displacements for the long-wave com- 
ponent are related to the fi by 

zT = f l X X ,  NT = - f 3 X X *  (A 5 )  

Continuing the analysis to higher order, we expand the coefficient functions in the 
asymptotic sequence 

€Ai = €A:') +epAil) + ep8Ai2) + ~ p ~ A ( ~ i +  ... (A 6) 

(the required form for these expansions is evident from the dynamic boundary con- 
ditions, for example) and substituting these expressions into the boundary and 
matching conditions yields systems of inhomogeneow equations for Ail), i = 1 , 2 , 3 ,  and 
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h,Q, = f l l ) .  The equations for the Ail) are solvable only if the short wave evolves 
according to the equation 

The inhomogeneous long-wave conditions can be manipulated to yield the forced 
wave equation 

,L4,w = a((P0)I2)xxxxx, (A 8) 

where Pw is the fourth-order operator defined in (A 5 ) .  

After extensive algebraic manipulation, they are determined to be: 
The goal of the analysis is the computation of the coupling coefficients v and 01. 
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- 2wcl h3 [, h1 C; - (C; - I?;,)] (6, TITz + 43 T2T3 
T1T2T3'%,3 P 2  '3 + P3 hZ 2 hl + P1 h2 

where 

and 
C,, = limC(k), C2, = limC(k), Co = limC(E). 

ha+O hl+O k 4  

One non-trivial check on the accuracy of these coefficients is that they are unchanged 
with respect to an interchange of the subscripts 1 and 3.  Another independent check 
on the long-wave coefficient a is that it reduces to the appropriate form for the forced 
long-wave component in the two-layer solution, when the limit h3+ 0 is applied. 

The resonant condition is clarified by defining the new independent variables 

E = X - C , T ,  7 = / A T .  

Then, writing equations (A 7), (A 8) in terms of these variables and transforming 
back to the original variables, it is relatively simple to show that the resonant case 
with C, z Co requires the scaling 

and the resonant bandwidth is 
p = 8 = ~ #  
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